
JuxtaMIDI: Using Data Visualization to Pinpoint Mistakes in MIDI
Practice Recordings

Jeremy Grifski and Stephen Wu

Abstract— When a musician wants to practice their instrument, they often have to rely on their peers or an instructor to help them
isolate mistakes in their technique. As an alternative solution, we are proposing a system to answer the following question: how can we
leverage data visualization to pinpoint mistakes in music data? For the sake of scope, we have chosen to focus on MIDI recordings.

Index Terms—Music, Music Education, MIDI, Data Visualization

1 INTRODUCTION AND MOTIVATION

Music is a profession and hobby enjoyed by many people.
Unfortunately, traditional instruments haven’t received a lot of attention
from the technology community. To this day, most musicians still
practice their instruments with little to no benefit from technology.

One area of music that could really benefit from a technological
upgrade would be practice. After all, practice is usually something that
occurs alone without a lot of feedback. Without access to an instructor,
musicians may find it difficult to self-assess their abilities. They could
benefit from some sort of tool to help pinpoint their mistakes.

In this project, we built a data visualization dashboard which can
be used to compare practice MIDI files with professional MIDI files.
The goal is to isolate areas in the practice file which are most unlike
the professional file for the sake of improvement.

This project is named JuxtaMIDI, since it juxtaposes MIDI files for
users to compare and analyze.

2 PLANNING

As students interested in music and music education, we wanted to
explore how data Visualization could improve the traditional and often
tedious methods of practice. Additionally, we came up with some
research questions, design goals, tasks, and metrics which we used to
map out our implementation.

2.1 Related Work

Many authors have explored music visualization and analysis, often
using MIDI files as their data source, since mp3s and other sound
formats are difficult to work with. A few have explored MIDI
comparison and analysis.

Music visualization includes examining 3D Space and color for non-
musicians [7], and emotion-based work [3]. Some of these work with
MIDI, while others work with sound files directly.

Software like GarageBand [4] help users record MIDI input and
this was used as inspiration for the Master notes pane. Other software
like MuseScore [5] turns the MIDI input into sheet music, which is a
difficult task without complete accuracy. These tools are more geared
towards composition and not learning though, but they are used as
inspiration for the project.

MIDI analysis and classification includes looking at genres [2] and
even melody extraction [6]. The former converts the MIDI pieces to

• Jeremy Grifski is a student at The Ohio State University. E-mail:
grifski.1@osu.edu.

• Stephen Wu is a student at The Ohio State University. E-mail:
wu.2719@osu.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

audio, and analyze the audio directly using audio features. Our work,
like the later, analyzes the MIDI file events directly.

Some education work examines students perspectives on composing
with MIDI [1], showing how beginning students easily picked up on
recording music with MIDI sequencing software. Sound quality was
an issue students noted, but the ease of students learning the software
and working with MIDI files and visualizations helps support the work
in this paper.

Our work attempts to combine MIDI analysis, music visualization,
and apply it towards learning.

2.2 Research Questions
The major research question we looked to address is: how can we
leverage data visualization to pinpoint mistakes in MIDI practice
recordings? Naturally, this question raises several underlying questions
such as:

• What are practice areas and quantifiable data (pitch, tempo, etc.)
that we can gleam from MIDI recordings?

• What are the most effective ways of visualizing those practice
areas?

• What are our options in analyzing MIDI files to visualize MIDI
events in a useful manner for musicians?

• How useful is comparing MIDI recordings via velocity, sustain,
and note frequency over time graphs

• Can we algorithmically generate useful automated feedback from
analysis of these MIDI recordings and graphs

In an effort to pinpoint mistakes, we wanted to find the best ways to
represent our musical data, so the user would see value in the tool.

2.3 Design Goals
At a high level, our goal was to construct a dashboard split into two
panes: the file pane and the graph pane.

The file pane should contain a list of active MIDI files which are each
given a color for encoding purposes. That means the dashboard should
be able to support about 20 simultaneous MIDI files due to the limits
of color perception. This should be more than enough considering the
practicality of comparing that many recordings.

Each file in the file pane should be able to be selected for viewing
purposes in the graph pane. When unselected, the file’s background
color should be neutral. When selected, the file’s background color
should mirror its color in the graph pane.

Meanwhile, the graph pane should contain several graphs:

• Notes versus Time (master graph)

• Notes versus Frequency



• Velocity versus Time

• Sustain versus Time

As a stretch goal, each graph should be connected with the master
graph for filtering purposes. When a section of time is selected in the
master graph, all other graphs should be updated to reflect the new
subsection of data. This would allow a user to hone in on specific
mistakes.

In addition, graphs should contain tooltips which will highlight areas
with the highest amount of mistakes. These tooltips should include
high level notes to assist the user in understanding the data.

Finally, the dashboard should be extended to include realtime
recording and sheet music comparison.

2.4 Tasks and Metrics

In order to verify the success of the project, we tracked several tasks in
GitHub:

• MIDI File Upload

• MIDI File Pane

• Notes versus Time Graph

• Notes versus Frequency Graph

• Velocity versus Time Graph

• Sustain versus Time Graph

• Mistake Analysis for Tooltips

• Realtime Recording

• Sheet Music Rendering and Comparison

Each of these tasks were broken down into smaller tasks as they all
need to be designed, prototyped, and tested.

As for verifying that our design is good, we tested it on users of
varying musical abilities. For less experienced individuals, we had
them watch us interact with the tool through a demonstration where
we collected feedback. For experienced musicians, we had them play
a song to generate a MIDI file, then we asked them to indicate any
mistakes they felt they made. Finally, we compared their personal
insight to the tool.

3 IMPLEMENTATION

Ultimately, JustaMIDI ended up being a web-based tool built entirely
as a static website using just JavaScript, CSS, and HTML.

3.1 Dashboard Overview

In terms of general design, we went with a dashboard approach using
CSS grids as seen in figure 1. In other words, we divided the space
into four columns by percentage of screen width from left to right: 9%,
43%, 43%, and 3%. Likewise, we divided the space into two rows by
screen height from top to bottom: 60% and auto.

Each dashboard element was then assigned some range of grid points
that they could occupy. For example, the MIDI selection interface was
given the entire first column. Likewise, the pane selection interface was
given the entire last column. Meanwhile, the note graph was given the
center two columns of the top row while the remaining graphs split the
bottom row of the same columns.

Fig. 1. The dashboard gives an overview of the music data in three
forms.

Fig. 2. The MIDI selection pane allows a user to interact with the music
files.

3.2 MIDI Selection Interface
As mentioned, the entire first column was dedicated to the MIDI
selection interface as seen in figure 2. This interface consisted of
a single MIDI upload button and any number of MIDI file items.

The upload button works just like any file upload interface. When a
file is uploaded, a callback function is executed. In this case, we parse
the midi file, and pass that data to the respective graphs panes to be
rendered. At the same time, we generate a MIDI file list item which
allows us to interact with the loaded file in various ways such as:

• Changing its name

• Toggling it on/off

• Deleting it

• Playing/pausing it

In addition, it is at this point that we assign the file a color for
encoding purposes in each graph. To aid in encoding, we color the
background of the file element, so it matches any data associated with
the file in the various graph panes.

3.3 Notes Over Time Pane
In the top pane, we render the notes over time graph as seen in figure 3.
Each note is encoded in three visual channels: color, position, size. The



Fig. 3. The notes played pane shows the notes played over times.

color gives us the track mapping, so it should match whatever color the
file was assigned in the MIDI selection pane. Meanwhile, the position
encodes two pieces of information: note and time. Finally, the size
encodes note duration.

When looking at this graph, it is helpful to imagine a piano along
the y-axis. Lower pitches are near the top of the graph while higher
pitches are closer to the bottom of the graph. Meanwhile, the x-axis
gives us the duration of each note from the time it begins to the time it
ends. Time is given as generic time units which gain meaning given
a tempo. Finally, each note has a tooltip which gives information like
note, start time, duration, and velocity.

To generate these features, we use a combination of open-source
libraries, but the primary tool is D3 which allows us to create graphs
from Scalar Vector Graphics (SVG). In particular, the notes over time
graph is generated by extracting the note information from all active
MIDI files and plotting the results against the axes as rectangles with
the appropriate color.

3.4 Note Frequency Pane

Fig. 4. The note frequency pane shows the occurence of all notes in
each song.

In the bottom left pane, we render the note frequency graph as seen
in figure 4. Here, we filter the MIDI file data, so we end up with a
collection of notes. Each note corresponds to a number which we
dynamically map to their respective letters using a lookup table (LUT).
Using this mapping, we’re able to generate a histogram of notes.

Just like the notes over time plot, we also use D3 here to handle the
bulk of the heavy lifting. At a high level, we use the note counts to
plot rectangle against two axes: frequency and note. The frequency
axis is scaled by the maximum note frequency over all active tracks.
Meanwhile, the x-axis contains a direct mapping of all unique notes

over all active tracks. We then sort that axis by the note frequency of
the primary track.

3.5 Note Velocity Pane

Fig. 5. The note velocity pane shows the range of note velocities over
time.

While the other two plots were relatively straightforward, we had
a lot of trouble deciding on the note velocity plot as seen in figure 5.
Ideally, what we would like to be able to capture in this plot is dynamics.
In other words, how can we show the ebb and flow of volume over time
to the user. As it turns out, it is harder than it seems.

Initially, we tried summing the velocity of all the notes at each time
step and plotting the results. Unfortunately, the resulting curve was
pretty eratic. In fact, we noticed we few bizarre artifacts in the results
like a downward slope over time which didn’t make a lot of sense for
a nearly constant volume song. Fortunately, someone pointed out that
summing the velocities at each time step is bad practice because we
aren’t guaranteed to have the same number of key presses at any given
time. In other words, the maximum volume is entirely dependent on
the maximum number of keys played simultaneously.

To accomodate for this problem, we decided to try plotting the
velocity range over time. The result contains two lines for each track
where the space in between is colored based on the file color. As
expected, the x-axis is in the same units as the notes over time plot, and
the y-axis is raw velocity.

3.6 Plot Filtering Pane
Finally, we added a plot filtering pane which gives us control over
which pane we can see at any given time as seen in figure 6. There are
four options:

• All panes as described in the dashboard overview

• The notes over time pane alone

• The note frequency pane alone

• The note velocity over time pane alone

When a pane is selected alone, we fill the entire center two columns
with that pane. For example, selecting the note frequency pane makes
the other two graph panes disappear while the note frequency pane is
expanded to fill the space.

3.7 Interactivity
Most of the interactivity elements are in the MIDI selection pane.
However, we haven’t discussed exactly how that interactivity works
up to this point. To reiterate, there are four main ways to interact with
each file: toggling, renaming, deleting, and playing.

When we toggle a file, the state of that file changes based on its
previous state. In other words, if we were originally showing a file in
all three graphs, toggling it would remove it from the graphs as seen



Fig. 6. The plot filtering pane allows a user to expand each plot for
viewing.

Fig. 7. An example of the dashboard with three music files–two active.

in figure 7. Toggling it again would render in all three graphs once
again. Meanwhile, deleting a file will remove the file from the program
completely, and renaming a file updates all the tooltips.

In addition, users can play each file as well. When a file is playing, a
marker is added to each time-domain graph (i.e. notes of time, velocity
over time, etc.) along the x-axis as seen in figure 8. In addition, the
marker is encoded with the color of the track currently playing. This
is all handled through a callback function that hooks into the MIDI
playback utility.

Likewise, users are able to filter by which graph they want to see as
mentioned previously in the Plot Filtering Pane section. Finally, there
are a few minor interactivity features like the ability to scroll along the
x-axis of the time-domain graphs and the ability to hover over graph
elements to show tooltips.

3.8 Environments
To complete this project, we required the following software:

• JavaScript: a web-based programming language

• D3.js: a data visualization library

• MIDI.js: a MIDI processing library

• GarageBand: a MIDI editing tool

Fig. 8. An example of playing one of the tracks.

• GitHub: a version control and project management tool

• Travis CI: a continuous integration tool for testing

With this software, we were able to build and test the entire system.

4 DESIGN METHOD

Now that we have had the chance to discuss the background and related
work, let’s talk about our design choices and how we believe they
effectively accomplish our tasks.

4.1 Data Abstraction

For our project, we were working with MIDI files which are event-based
music files. In other words, we were not dealing with audio signals.
Instead, we took a file format which stores music information like
tracks, notes, velocities, and durations, and made sense of it visually.

Despite the fact that the MIDI file format already abstracts music
signals, there still is a case to make to further abstract the data. For
example, MIDI files are entirely in binary which means that they are
not easy to read as a user. As a result, we used a utility to parse the
MIDI file into a JavaScript object.

While the object itself was a bit easier to work with, the data still
wasn’t meaningful to our end user. For example, the resulting JavaScript
object contained a lot of nested information about tracks and events but
almost no clear information on how that data maps to musical notes,
rhythms, and dynamics. To make matters worse, MIDI files store events
using numeric codes, so the data is not easy to read, like below:

• Type: 9

• Note: 47

• Velocity: (90, 0)

• Duration: 120

To deal with this, we had to do significant data modifications for
our work. For example, a type 9 event indicates onset which marks
the beginning of a note, while a type 8 event represents the end. Some
MIDI files also choose to represent their note off events as note onsets
with 0 volume.

Ultimately, we wanted the user to interact with the music in a way
that they think about it on a daily basis: notes, rhythms, dynamics,
chords, etc. To get there, however, we had to work I way up from
binary MIDI files.



4.2 Task Abstraction
Typically, when musicians practice, they have two options: practice
alone or practice with an instructor. When practicing alone, musicians
don’t really have a lot of options for getting feedback. In other words,
there is only so much practice a student can do alone before they hit
their potential limit. That limit is usually set by how well they can
judge their own abilities. Meanwhile, practicing with an instructor
is usually the best case scenario. Instructors can accurately pinpoint
areas of improvement which the musician can focus on in their private
studies.

Naturally, we wanted to fit somewhere in the middle with an
automated visualization solution. In other words, the goal would be to
allow a student to practice alone with a system which could provide
some general feedback about their abilities.

To accomplish this, we had abstract some of the tasks of self-
assessment like listening to self-made recordings and analyzing the
results relative to a profession recording. The less experienced the
musician, the more difficult the self-assessment task becomes.

As a result, we decided to build a visualization system which
abstracts the self-assessment task. In other words, how do we take
some of the cognitive overhead of making and comparing recordings
and shift it to automation. The result was our JuxtaMIDI tool which
allows a user to upload MIDI recordings and compare them visually,
rather than aurally.

4.3 Design Considerations
Unfortunately, we have no way of perceiving sound at a global level.
In other words, we can’t hear an entire song at one time. Luckily,
we can see the big picture, so if there is any way to demonstrate the
global features of music visually, we would have an excellent tool for
self-assessment. For example, a student may find it useful to compare
their dynamics relative to a professional recording. Without being able
to visualize a global feature like dynamics, the user would have to
listen to both tracks and do their best to gauge the dynamic range for
themselves.

As a result, a lot of consideration went into looking at global features
of music like dynamics and note totals. These features are not easily
extracted when listening to music, but they can be very easily detected
in a visual format. Ultimately, we settled on visualizing the components
we felt were the most difficult to track during practice.

5 RESULTS AND ANALYSIS

Evaluation was done in two phases, an initial prototype on March
7, 2019 and an updated prototype on April 6, 2019. Feedback was
gathered from both phases to evaluate and improve the product.

5.1 Prototype Design
The initial prototype aimed to accomplish several of the major
tasks mentioned previously. In particular, the following tasks were
implemented:

• MIDI File Upload

• MIDI File Pane

• Notes versus Time Graph

• Notes versus Frequency Graph

• Velocity versus Time Graph

In addition, we added a few extra interactivity features during our
own iterative process:

• MIDI File Color Mapping

• MIDI File Playback

• MIDI File Renaming

• MIDI File Toggling

With the prototype read to go, we began the evaluation process by
presenting it to the class.

5.2 Peer Feedback
In general, feedback was positive. However, there were a few things
that needed improvement in the original prototype. The following list
contains the feedback from our peers:

• Colors were too closely related (e.g. light and dark blue), but
calming

• Velocity plot was difficult to see differences in curve and may not
be capturing data. We could also explore normalizing (average
volume = 1.0).

• Musicians don’t care about time steps - they want beats and
measures

• Playback should animate graphs

5.3 Musician Feedback
In addition to the in class feedback, we also chose to evaluate the
JuxtaMIDI platform ourselves. In particular, Stephen leveraged his
piano background to come up with some thoughts.

Inherent limitations:

• Online, generated MIDI files are often lacking when compared to
an actual song:

– Song may have a constant velocity for every note.

– Key signatures, tempo, and sustain may be missing.

• Recorded MIDI files have some of these issues and more:

– Velocity is obtained, but this is not exactly reflective of
playing on an acoustic piano, which is what would be
typically used in performance. Keyboards, especially
cheaper ones, are simply less expressive than acoustic
pianos.

– If the user is off-time by even a beat, the whole song gets
offset. If the user corrects their time and becomes on-time,
this issue is resolved. This means the user needs to be
playing to a metronome and correct any time lost, which
adds additional requirements on their playing.

• Preprocessing:

– Key signatures and tempo need to be manually added if
needed for tool (it isn’t in the current stage).

– The MIDI file also needs to be edited to remove any wait
in the beginning.

Benefits:

• Where this tool thrives is helping identify insights that can’t be
simply heard or seen in a recording.

• Users can upload and play their recordings.

• The velocity curve is probably the most novel item, since other
tools (like GarageBand) provide the features of the Master Note
graph.

– Users can follow the sheet music and quickly see how they
played different sections, e.g. if they played one forte
section louder than another, or if they mistakenly played
one forte section as piano.

Potential:

• This tool would greatly benefit from adding measure count. Since
sheet music often comes with measure numbers, users could
cross-reference their playing with the measure number.



• Exploring and solving the tempo offset issue would make this
tool much more useful.

• Some additional outlier detection or analysis would also help.

• Since musicians are used to sheet music, having a sheet music
overlay with different colored notes per track would be immensely
helpful.

– This would require key signature, tempo, and a really good
sheet music generator

5.4 Design Changes

To address some of the feedback, we decided to look into the following
changes:

1. Adding a time marker to show where the user is in the song

2. Changing velocity plot to be more expressive

3. Improving color choices or overlay so that tracks are more easily
distinguished

4. Adding option for user to specify tempo, changing time to
measure

For the final implementation, we completed #1 and #2 for the
updated prototype.

5.5 Production Implementation

Ultimately, the final production dashboard was extended to include a
marker to illustrate playback. The marker was composed of a colored
circle and a vertical line segment where the compound structure encodes
both the current time of playback and which track is playing.

In addition, we implemented a handful of fixes for the following
issues:

• File playback continued even after files were deleted.

• Axes labels were missing.

• Data abstraction techniques were slow.

For the most part, we fixed these issues. However, the tool is still
fairly slow, and that issue scales as songs are added.

Finally, we also made each SVG responsive, so they would properly
fill any screen size. The drawback of this approach is text skewing.
Now, text can seem inconsistent between graphs.

6 DISCUSSION

For musicians, practicing an instrument has long been a feedback
loop between student and instructor. Naturally, we felt there was an
opportunity to add a new feedback option through data visualization.

Currently, the JuxtaMIDI solution is very limited. The only people
who could take advantage of this tool are musicians who play MIDI-
compatible instruments or musicians who are interested in comparing
MIDI tracks. Even then, the tool itself is a bit limited. For example,
time offsets are a major problem when comparing tracks. If a student
were to get off by a beat, their notes over time plot and velocity over
plot would be shifted.

Regardless, we still believe the JuxtaMIDI tool is excellent for
observing global traits of music. For example, the tool may be handy for
determining the key of a track based on the note histogram. Likewise,
the tool does a great job of giving an overview of velocity which may
be useful for understanding a song’s dynamic trajectory.

7 CONCLUSION

Overall, JuxtaMIDI turned out to be a solid tool for visualizing
differences in MIDI files. In particular, the tool highlights errors in note
frequency, dynamics, rhythm, and pitch. As a result, JuxtaMIDI may
be helpful for students learning a MIDI-compatible instrument like the
piano.

In the future, we would like to expand JuxtaMIDI to allow for
content filtering. For example, it would be nice to be able to select a
region of the master graph and filter out all data not in that region on all
three plots. Likewise, we were also interested in adding some feedback
through automated error detection. For instance, if a user played quiet
in a loud section, we would like to highlight that error for the user.

It may seem odd to want to think of music in a visual way, but we
feel our system will have a positive impact on musicians who want to
improve their practice sessions.

REFERENCES

[1] Samuel Airy and Judy M. Parr. “MIDI, Music and Me:
Students’ Perspectives on Composing with MIDI”. In: Music
Education Research 3.1 (2001), pp. 41–49. DOI: 10.1080/
14613800020029941. eprint: https://doi.org/10.
1080/14613800020029941. URL: https://doi.org/
10.1080/14613800020029941.

[2] Zehra Cataltepe, Yusuf Yaslan, and Abdullah Sonmez. “Music
Genre Classification Using MIDI and Audio Features”. In:
EURASIP Journal on Advances in Signal Processing 2007.1
(2007), p. 036409. ISSN: 1687-6180. DOI: 10.1155/2007/
36409. URL: https://doi.org/10.1155/2007/
36409.

[3] Chin-Han Chen et al. “Emotion-Based Music Visualization
Using Photos”. In: Advances in Multimedia Modeling. Ed.
by Shin’ichi Satoh, Frank Nack, and Minoru Etoh. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2008, pp. 358–368. ISBN:
978-3-540-77409-9.

[4] GarageBand. 2019. URL: https://www.apple.com/mac/
garageband/ (visited on 04/20/2019).

[5] MuseScore. 2019. URL: http://musescore.org (visited
on 04/20/2019).

[6] G. Ozcan, C. Isikhan, and A. Alpkocak. “Melody extraction on
MIDI music files”. In: Seventh IEEE International Symposium
on Multimedia (ISM’05). 2005, 8 pp.–. DOI: 10.1109/ISM.
2005.77.

[7] S. M. Smith and G. N. Williams. “A visualization of music”.
In: Proceedings. Visualization ’97 (Cat. No. 97CB36155). 1997,
pp. 499–503. DOI: 10.1109/VISUAL.1997.663931.

https://doi.org/10.1080/14613800020029941
https://doi.org/10.1080/14613800020029941
https://doi.org/10.1080/14613800020029941
https://doi.org/10.1080/14613800020029941
https://doi.org/10.1080/14613800020029941
https://doi.org/10.1080/14613800020029941
https://doi.org/10.1155/2007/36409
https://doi.org/10.1155/2007/36409
https://doi.org/10.1155/2007/36409
https://doi.org/10.1155/2007/36409
https://www.apple.com/mac/garageband/
https://www.apple.com/mac/garageband/
http://musescore.org
https://doi.org/10.1109/ISM.2005.77
https://doi.org/10.1109/ISM.2005.77
https://doi.org/10.1109/VISUAL.1997.663931

	Introduction and Motivation
	Planning
	Related Work
	Research Questions
	Design Goals
	Tasks and Metrics

	Implementation
	Dashboard Overview
	MIDI Selection Interface
	Notes Over Time Pane
	Note Frequency Pane
	Note Velocity Pane
	Plot Filtering Pane
	Interactivity
	Environments

	Design Method
	Data Abstraction
	Task Abstraction
	Design Considerations

	Results and Analysis
	Prototype Design
	Peer Feedback
	Musician Feedback
	Design Changes
	Production Implementation

	Discussion
	Conclusion

